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INTRODUCTION 

THE USE of near-wall turbulence models is necessary for mass 
transfer computations at low diffusivity conditions. Few of 
the existent near-wall k--E proposals yield, under the assump- 
tion of a constant turbulent Schmidt number, satisfactory 
predictions for mass transfer rates at high Schmidt numbers. 
In order to remedy this situation, Herrero et al. [l] developed 
a new k--E formulation (H91) based on Lam and Bremhorst’s 
model [2] (LB). 

Nesic et al. [3] very recently simulated mass transfer rates 
in a sudden pipe expansion using the LB proposal. Although 
the Schmidt number studied was high enough (SC = 1460), 
they did not choose a near-wall formulation suitable for low 
diffusivity conditions, such as H91 or Myong ef al. [4]. 
Nesic et al. [3] concluded LB overpredicts experimental mass 
transfer rates with a SC, = 0.9, in both the recirculating and 
in the fully developed pipe flow regions. In order to force 
agreement with the experimental values of Berger and Hau 
[5] they propose SC, = 1.7 in the viscous sublayer (.v’ < 5) 
and SC, = 0.9 for y+ > 5. H91 results, however, show that 
the LB formulation predicts Sherwood numbers in fully 
developed pipe flow that are half the value of Berger and 
Hau’s experimental data. In order to clarify matters, a 
numerical simulation of momentum and mass transfer in a 
sudden pipe expansion is performed. Predictions are com- 
pared with the data reported by Sydberger and Lotz [6] at 
Re = 42 000 and SC = 1460, which were also used by Nesic 
et al. [3], and with those measured at SC = 2500 by Runchal 

[71. 

NUMERICAL PROCEDURE 

The averaged governing equations with the original LB 
and the modified H91 damping functions, with SC, = 0.9, 
were solved for the primitive variables using staggered grids 
and a second order accurate procedure. A sufficient number 
of computational grid points, e.g. 4-5 mesh points, have to be 
adequately distributed within the viscous sublayer (,v+ < 5) 
when momentum transfer is computed. Mass transfer cal- 
culations require, in addition, that at least one computational 
point has to be placed in the linear concentration profiles 

region, i.e. for SC = 2500 at least one point should be located 
sty‘ = 0.1, as used by Nesic et al. [3]. Care was also taken 
to have enough grid cells in regions of sudden pipe expansion 
where important velocity and concentration gradients occur. 

The four different meshes described in Table 1 were used 
in the computations. Grids A and B consisted of 81 points 
in the axial direction and 28 points in the radial direction, so 
that the grid used by Nesic et al. [3] could be approximately 
reproduced. The distance between points in the radial direc- 
tion is allowed to grow faster in grid A than in grid 8. The 
finer grid C consists of 123 x 75 nodes. Although this mesh 
is sufficient for engineering calculations, an even finer grid 
of 188 x 127 nodes (grid D) was used to check that com- 
putations were grid independent. In all calculations the inlet/ 
outlet diameter ratio was taken equal to 0.5. Grids A and B 
expand IO outlet diameters in the direction of the flow, to 
reproduce Nesic et al.‘s [3] conditions as closely as possible, 
while meshes C and D cover a total length of 80 diameters 
to observe the development of pipe flow. 

The zero gradient boundary condition for the dissipation 
rate at the wall used by Nesic et al. [3] was also adopted 
in the present work, despite the fact that direct numerical 
simulation results indicate that this boundary condition is 
inadequate (Chapman and Kuhn [8]). However, no sig- 
nificant differences in the numerical results were observed 
when either the zero gradient or other alternative boundary 
conditions for E, such as those proposed by Chapman and 
Kuhn [8] or Lam and Bremhorst [2], were applied. The 
turbulent kinetic energy of the inlet flow has a strong influ- 
ence on the shape and characteristics of the recirculation, as 
discussed by So [9]. Since Sydberger and Lotz [6] and Run- 
chal [7] do not report accurate values for the inlet conditions 
or for the reattachment length xL, which in both cases it was 
comprised between 5.0 and 7.0 step heights h, the turbulence 
intensity value of 0.1 suggested by So [9] was used. 

RESULTS AND DISCUSSION 

Stanton numbers computed with the finest grids are com- 
pared in Figs. 1 and 2 with experimental data. Both LB and 
H91 models predict that maximum transfer rates occur close 
to the reattachment point, but values are clearly over- 

Table 1. Summary of different computational grids used in present 
work 

Grid A Grid B Grid C Grid D 

Points in x direction 81 81 123 188 
Points in direction I’ 28 28 75 137 
First distance (p+) y 0.1 0.1 0.1 0. I 
First x distance (.x/h) 0.02 0.02 0.02 0.002 
Total pipe length (.u/h) 38 38 320 320 
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NOMENCLATURE 

h step height [m] x axial coordinate [m] 
k turbulent kinetic energy [m’ s-‘1 xL reattachment length [m] 
Re Reynolds number based on average velocity and Y distance to pipe wall [m] 

diameter Y+ dimensionless distance to the wall, yu,/v. 
SC Schmidt number 
SC, turbulent Schmidt number Greek symbols 
St Stanton number E dissipation rate of k [m’ ss3] 
a* friction velocity [m s- ‘1 V kinematic viscosity [m’ SK’]. 

predicted. According to Launder [IO], such behaviour is 
typical of low Reynolds number k--E models, which tend to 
overpredict this maxima by a factor as large as seven. Both 
figures illustrate that the LB model yields a fully developed 
Stanton value much lower than that predicted by H91, which 
is in good agreement with experimental data. 

The main trends observed in Figs. 1 and 2 are quantified 
in Table 2, where the fully developed values given by the 
correlation of Berger and Hau [5] are also included. For the 
case of SC = 1460, the maximum peak values predicted by 
the LB and H91 formulations are 3.3 and 4.9 times larger 
than the experimental values reported by Sydberger and 
Lotz [6] near the reattachment point. The LB formulation, 
however, underpredicts the experimental fully developed 
values at SC = 1460 and 2500 by 50%, whereas H91 is in 
reasonable agreement with data and the correlation of Berger 
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FIG. 1. Axial evolution of mass transfer rate at SC = 1460. 
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FIG. 2. Axial evolution of mass transfer rate at SC = 2500. 

and Hau [5]. It should be noted that when transfer rates are 
normalized with respect to fully developed pipe values LB 
predicts a ratio of 15.1 for the reattachment region, which is 
much larger than the 11.9 given by H9 1 or the experimental 
ratio of 2.4. 

These results are in agreement with those reported by 
Herrero et al. [l]. However, they contradict the conclusion 
reached by Nesic et al. [3] that the LB formulation tends to 
overpredict the fully developed experimental values obtained 
from the correlation of Berger and Hau [5]. A possible expla- 
nation for this discrepancy is the fact that Nesic er al. [3] 
used in their work a coarse mesh, similar to present grid A. 
In order to establish the effects of grid size in the com- 
putations the four meshes A-D included in Table 1 have been 
used to predict mass transfer rates at SC = 1460. Computed 
transfer rates are presented in Figs. 3 and 4 for both LB and 
H91 formulations. Figure 3 shows that predictions obtained 
with grid A. which has the last computational point in the 
streamwise direction placed at x/h = 38, differ significantly 
from those obtained using the other finer grids. Grid A yields 
higher Stanton numbers in the redeveloping region for both 
models. The same behaviour is observed in Fig. 4 for grid B. 
In this case, however, predictions are more similar to those 
of grids C and D because a more adequate grid distribution 
is applied. 

Table 2. Comparison of predicted and experimental Stanton 
values at the maximum mass transfer location and in the 

fully developed region 

SC = 1460 SC = 2500 

St Peak Fully dev. Peak Fully dev. 
x lo5 value value value value 

LB 22.25 1.47 15.24 0.98 
H91 33.1 2.79 23.3 1.94 
Experiment 6.8 2.89 5.9 2.02 

Table 3. Effect of computational grid on predicted mass 
transfer rates 

St 
x 105 

Grid A 
Grid B 
Grid C 
Grid D 

LB H91 

Peak Value at Peak Value at 
value x,/h = 38 value x,/h = 38 

16.36 2.13 29.26 3.61 
15.76 1.77 29.44 3.11 
17.59 1.82 32.3 3.39 
22.25 1.79 33.1 3.36 
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FIG. 3. Effect of computational grid on numerical predictions FIG. 4. Effect of computational grid on numerical predictions 
obtained with the LB formulation. obtained with the H91 formulation. 

Further comparison of grid performance is presented in 
Table 3. This table includes the values of the Stanton number 
at the location of maximum transfer rates and at x/h = 38. 
Mass transfer rates at x/h = 38 in Table 3 deviate more than 
20% from the fully developed values included in Table 2. 
This indicates that the flow is not completely developed at 
that location. Furthermore, Table 3 shows that the coarser 
grids A and B yield Stanton values that differ clearly from 
those computed with grids C and D at both locations. The 
small discrepancies that are observed for the finest grids C 
and D, and which persist at x/h = 320, suggest that grid 
independence of results are only ensured for grid D in both 
the redeveloping and fully developed regions. The difference 
observed in the peak value for the LB simulation indicates 
that grid C is not fine enough in the region of separated flow. 

Nesic ef al. [3] report a computed value for the mass 
transfer rate at the peak location, obtained using the LB 
formulation, that is more than 20% lower than the lowest 
value shown in Table 3. In addition, their predictions at 
r/h = 30 are 100% higher than the highest values reported 
in this table. Thus, present results illustrate the importance 
of choosing appropriate grids for computation of mass 
and/or heat transfer rates, especially under low diffusivity 
conditions. 

CONCLUSIONS 

The numerical simulation of transfer rates in a sudden 
pipe expansion at Re = 42 000 for SC = 1460 and 2500 shows 
that few low Reynolds number k--E formulations are capable 
of yielding accurate predictions under low diffusivity con- 
ditions. The performance of previous models is significantly 
affected by the size and node distribution of the com- 
putational grid used. Results show that coarse grids can yield 
predictions that are in error even in the fully developed pipe 
flow region. Under some circumstances these grids may even 
force models that otherwise perform poorly from a mass 
and/or heat transfer point of view to yield predictions in 
agreement with published data. 
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